Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Euro Surveill ; 28(3)2023 01.
Article in English | MEDLINE | ID: covidwho-2215127

ABSTRACT

BackgroundPost-authorisation vaccine safety surveillance is well established for reporting common adverse events of interest (AEIs) following influenza vaccines, but not for COVID-19 vaccines.AimTo estimate the incidence of AEIs presenting to primary care following COVID-19 vaccination in England, and report safety profile differences between vaccine brands.MethodsWe used a self-controlled case series design to estimate relative incidence (RI) of AEIs reported to the national sentinel network, the Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub. We compared AEIs (overall and by clinical category) 7 days pre- and post-vaccination to background levels between 1 October 2020 and 12 September 2021.ResultsWithin 7,952,861 records, 781,200 individuals (9.82%) presented to general practice with 1,482,273 AEIs, 4.85% within 7 days post-vaccination. Overall, medically attended AEIs decreased post-vaccination against background levels. There was a 3-7% decrease in incidence within 7 days after both doses of Comirnaty (RI: 0.93; 95% CI: 0.91-0.94 and RI: 0.96; 95% CI: 0.94-0.98, respectively) and Vaxzevria (RI: 0.97; 95% CI: 0.95-0.98). A 20% increase was observed after one dose of Spikevax (RI: 1.20; 95% CI: 1.00-1.44). Fewer AEIs were reported as age increased. Types of AEIs, e.g. increased neurological and psychiatric conditions, varied between brands following two doses of Comirnaty (RI: 1.41; 95% CI: 1.28-1.56) and Vaxzevria (RI: 1.07; 95% CI: 0.97-1.78).ConclusionCOVID-19 vaccines are associated with a small decrease in medically attended AEI incidence. Sentinel networks could routinely report common AEI rates, contributing to reporting vaccine safety.


Subject(s)
COVID-19 Vaccines , COVID-19 , Influenza Vaccines , Humans , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , England/epidemiology , Influenza Vaccines/adverse effects , Vaccination/adverse effects
2.
JMIR Form Res ; 6(8): e37821, 2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-1923868

ABSTRACT

BACKGROUND: The Data and Connectivity COVID-19 Vaccines Pharmacovigilance (DaC-VaP) UK-wide collaboration was created to monitor vaccine uptake and effectiveness and provide pharmacovigilance using routine clinical and administrative data. To monitor these, pooled analyses may be needed. However, variation in terminologies present a barrier as England uses the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), while the rest of the United Kingdom uses the Read v2 terminology in primary care. The availability of data sources is not uniform across the United Kingdom. OBJECTIVE: This study aims to use the concept mappings in the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) to identify common concepts recorded and to report these in a repeated cross-sectional study. We planned to do this for vaccine coverage and 2 adverse events of interest (AEIs), cerebral venous sinus thrombosis (CVST) and anaphylaxis. We identified concept mappings to SNOMED CT, Read v2, the World Health Organization's International Classification of Disease Tenth Revision (ICD-10) terminology, and the UK Dictionary of Medicines and Devices (dm+d). METHODS: Exposures and outcomes of interest to DaC-VaP for pharmacovigilance studies were selected. Mappings of these variables to different terminologies used across the United Kingdom's devolved nations' health services were identified from the Observational Health Data Sciences and Informatics (OHDSI) Automated Terminology Harmonization, Extraction, and Normalization for Analytics (ATHENA) online browser. Lead analysts from each nation then confirmed or added to the mappings identified. These mappings were then used to report AEIs in a common format. We reported rates for windows of 0-2 and 3-28 days postvaccine every 28 days. RESULTS: We listed the mappings between Read v2, SNOMED CT, ICD-10, and dm+d. For vaccine exposure, we found clear mapping from OMOP to our clinical terminologies, though dm+d had codes not listed by OMOP at the time of searching. We found a list of CVST and anaphylaxis codes. For CVST, we had to use a broader cerebral venous thrombosis conceptual approach to include Read v2. We identified 56 SNOMED CT codes, of which we selected 47 (84%), and 15 Read v2 codes. For anaphylaxis, our refined search identified 60 SNOMED CT codes and 9 Read v2 codes, of which we selected 10 (17%) and 4 (44%), respectively, to include in our repeated cross-sectional studies. CONCLUSIONS: This approach enables the use of mappings to different terminologies within the OMOP CDM without the need to catalogue an entire database. However, Read v2 has less granular concepts than some terminologies, such as SNOMED CT. Additionally, the OMOP CDM cannot compensate for limitations in the clinical coding system. Neither Read v2 nor ICD-10 is sufficiently granular to enable CVST to be specifically flagged. Hence, any pooled analysis will have to be at the less specific level of cerebrovascular venous thrombosis. Overall, the mappings within this CDM are useful, and our method could be used for rapid collaborations where there are only a limited number of concepts to pool.

3.
JMIR Res Protoc ; 10(10): e30083, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1450770

ABSTRACT

BACKGROUND: Since the start of the COVID-19 pandemic, efforts have been made to develop early warning risk scores to help clinicians decide which patient is likely to deteriorate and require hospitalization. The RECAP (Remote COVID-19 Assessment in Primary Care) study investigates the predictive risk of hospitalization, deterioration, and death of patients with confirmed COVID-19, based on a set of parameters chosen through a Delphi process performed by clinicians. We aim to use rich data collected remotely through the use of electronic data templates integrated in the electronic health systems of several general practices across the United Kingdom to construct accurate predictive models. The models will be based on preexisting conditions and monitoring data of a patient's clinical parameters (eg, blood oxygen saturation) to make reliable predictions as to the patient's risk of hospital admission, deterioration, and death. OBJECTIVE: This statistical analysis plan outlines the statistical methods to build the prediction model to be used in the prioritization of patients in the primary care setting. The statistical analysis plan for the RECAP study includes the development and validation of the RECAP-V1 prediction model as a primary outcome. This prediction model will be adapted as a three-category risk score split into red (high risk), amber (medium risk), and green (low risk) for any patient with suspected COVID-19. The model will predict the risk of deterioration and hospitalization. METHODS: After the data have been collected, we will assess the degree of missingness and use a combination of traditional data imputation using multiple imputation by chained equations, as well as more novel machine-learning approaches to impute the missing data for the final analysis. For predictive model development, we will use multiple logistic regression analyses to construct the model. We aim to recruit a minimum of 1317 patients for model development and validation. We will then externally validate the model on an independent dataset of 1400 patients. The model will also be applied for multiple different datasets to assess both its performance in different patient groups and its applicability for different methods of data collection. RESULTS: As of May 10, 2021, we have recruited 3732 patients. A further 2088 patients have been recruited through the National Health Service Clinical Assessment Service, and approximately 5000 patients have been recruited through the DoctalyHealth platform. CONCLUSIONS: The methodology for the development of the RECAP-V1 prediction model as well as the risk score will provide clinicians with a statistically robust tool to help prioritize COVID-19 patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04435041; https://clinicaltrials.gov/ct2/show/NCT04435041. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/30083.

4.
JMIR Res Protoc ; 10(5): e29072, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1211771

ABSTRACT

BACKGROUND: During the pandemic, remote consultations have become the norm for assessing patients with signs and symptoms of COVID-19 to decrease the risk of transmission. This has intensified the clinical uncertainty already experienced by primary care clinicians when assessing patients with suspected COVID-19 and has prompted the use of risk prediction scores, such as the National Early Warning Score (NEWS2), to assess severity and guide treatment. However, the risk prediction tools available have not been validated in a community setting and are not designed to capture the idiosyncrasies of COVID-19 infection. OBJECTIVE: The objective of this study is to produce a multivariate risk prediction tool, RECAP-V1 (Remote COVID-19 Assessment in Primary Care), to support primary care clinicians in the identification of those patients with COVID-19 that are at higher risk of deterioration and facilitate the early escalation of their treatment with the aim of improving patient outcomes. METHODS: The study follows a prospective cohort observational design, whereby patients presenting in primary care with signs and symptoms suggestive of COVID-19 will be followed and their data linked to hospital outcomes (hospital admission and death). Data collection will be carried out by primary care clinicians in four arms: North West London Clinical Commissioning Groups (NWL CCGs), Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC), Covid Clinical Assessment Service (CCAS), and South East London CCGs (Doctaly platform). The study involves the use of an electronic template that incorporates a list of items (known as RECAP-V0) thought to be associated with disease outcome according to previous qualitative work. Data collected will be linked to patient outcomes in highly secure environments. We will then use multivariate logistic regression analyses for model development and validation. RESULTS: Recruitment of participants started in October 2020. Initially, only the NWL CCGs and RCGP RSC arms were active. As of March 24, 2021, we have recruited a combined sample of 3827 participants in these two arms. CCAS and Doctaly joined the study in February 2021, with CCAS starting the recruitment process on March 15, 2021. The first part of the analysis (RECAP-V1 model development) is planned to start in April 2021 using the first half of the NWL CCGs and RCGP RSC combined data set. Posteriorly, the model will be validated with the rest of the NWL CCGs and RCGP RSC data as well as the CCAS and Doctaly data sets. The study was approved by the Research Ethics Committee on May 27, 2020 (Integrated Research Application System number: 283024, Research Ethics Committee reference number: 20/NW/0266) and badged as National Institute of Health Research Urgent Public Health Study on October 14, 2020. CONCLUSIONS: We believe the validated RECAP-V1 early warning score will be a valuable tool for the assessment of severity in patients with suspected COVID-19 in the community, either in face-to-face or remote consultations, and will facilitate the timely escalation of treatment with the potential to improve patient outcomes. TRIAL REGISTRATION: ISRCTN registry ISRCTN13953727; https://www.isrctn.com/ISRCTN13953727. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/29072.

SELECTION OF CITATIONS
SEARCH DETAIL